On-Line 3-Chromatic Graphs I. Triangle-Free Graphs
نویسندگان
چکیده
This is the first half of a two-part paper devoted to on-line 3-colorable graphs. Here on-line 3-colorable triangle-free graphs are characterized by a finite list of forbidden induced subgraphs. The key role in our approach is played by the family of graphs which are both triangleand (2K2 + K1)-free. Characterization of this family is given by introducing a bipartite modular decomposition concept. This decomposition, combined with the greedy algorithm, culminates in an on-line 3-coloring algorithm for this family. On the other hand, based on the characterization of this family, all 22 forbidden subgraphs of on-line 3-colorable triangle-free graphs are determined. As a corollary, we obtain the 10 forbidden subgraphs of on-line 3-colorable bipartite graphs. The forbidden subgraphs in the finite basis characterization are on-line 4-critical, i.e., they are on-line 4-chromatic but their proper induced subgraphs are on-line 3-colorable. The results of this paper are applied in the companion paper [Discrete Math., 177 (1997), pp. 99–122] to obtain the finite basis characterization of connected on-line 3-colorable graphs (with 51 4-critical subgraphs). However, perhaps surprisingly, connectivity (or the triangle-free property) is essential in a finite basis characterization: there are infinitely many on-line 4-critical graphs.
منابع مشابه
Coloring Triangle-Free Rectangle Overlap Graphs with $$O(\log \log n)$$ O ( log log n ) Colors
Recently, Pawlik et al. have shown that triangle-free intersection graphs of line segments in the plane can have arbitrarily large chromatic number. Specifically, they construct triangle-free segment intersection graphs with chromatic number Θ(log log n). Essentially the same construction produces Θ(log log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes—th...
متن کاملOn minimal triangle-free 6-chromatic graphs
A graph with chromatic number k is called k-chromatic. Using computational methods, we show that the smallest triangle-free 6-chromatic graphs have at least 32 and at most 40 vertices. We also determine the complete set of all triangle-free 5-chromatic graphs up to 23 vertices and all triangle-free 5-chromatic graphs on 24 vertices with maximum degree at most 7. This implies that Reed’s conject...
متن کاملColoring Triangle-Free Rectangle Overlap Graphs with O(log log n) Colors
Recently, it was proved that triangle-free intersection graphs of n line segments in the plane can have chromatic number as large as (log log n). Essentially the same construction produces (log log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes—those belonging to any class of compact arcconnected sets in R2 closed under horizontal scaling, vertical scaling...
متن کاملOn-line 3-chromatic graphs - II critical graphs
On-line coloring of a graph is the following process. The graph is given vertex by vertex (with adjacencies to the previously given vertices) and for the actual vertex a color diierent from the colors of the neighbors must be irrevocably assigned. The on-line chromatic number of a graph G, (G) is the minimum number of colors needed to color on-line the vertices of G (when it is given in the wor...
متن کاملOn the Chromatic Number of the Complement of a Class of Line Graphs
Let G be a graph, G its complement, L(G) its line graph, and χ(G) its chromatic number. Then we have the following Theorem Let G be a graph with n vertices. (i) If G is triangle free, then n− 4 ≤ χ ( L(G) ) ≤ n− 2 (ii) If G is planar and every triangle bounds a disk, then n− 3 ≤ χ ( L(G) ) ≤ n− 2
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 12 شماره
صفحات -
تاریخ انتشار 1999